
Abstract

Improperly bounded program inputs present a major class
of program defects. In secure applications, these bugs can
be exploited by malicious users, allowing them to overwrite
buffers and execute harmful code. In this paper, we present
a high coverage dynamic technique for detecting software
faults caused by improperly bounded program inputs. Our
approach is novel in that it retains the advantages of
dynamic bug detection, scope and precision; while at the
same time, relaxing the requirement that the user specify
the input that exposes the bug. To implement our approach,
inputs are shadowed by additional state that characterize
the allowed bounds of input-derived variables. Program
operations and decision points may alter the shadowed
state associated with input variables. Potentially hazardous
program sites, such as an array references and string func-
tions, are checked against the entire range of values that
the user might specify. The approach found several bugs
including two high-risk security bugs in a recent version of
OpenSSH.

1. Introduction

Bugs in software can have a devastating effect in today’s
world. Computer viruses can exploit software bugs in order
to run malicious code or gain access to restricted data. A
highly visible and damaging example of this type of defect
includes improperly bounded checks on network data. A
common example of this class of defect is the buffer over-
flow. Input data is obtained from the network without
checking to see if it will fit within a program buffer. Mali-
cious users can exploit this bug by overwriting stack buffers
in a way that overwrites the function return address to direct
control to arbitrary code.

To prevent a buffer overflow exploit, it is necessary for the
program to check input data to ensure it does not exceed the
bounds of any buffer it may be used to reference. However,
many programs either fail to check input data or check the
data incorrectly. Such cases are often hard to find. For
example, the code sequence in Figure 1 contains an off-by-
one error. Such an error may be difficult to find if the pro-
grammer writing the code to check the reference is not

aware that the index is incremented before it is referenced.

Another common source of security bugs is improper use of
the string library functions in C. Since the functions provide
no checking, the responsibility resides with the program-
mer. To complicate matters, there is little consistency on
how the different string functions operate. For instance, the
strcpy command always copies a null character but
strncpy will not copy the null character unless one is
present within the specified limit. An example of a bug
involving strings is shown in Figure 2. In this case, there is
a check to filter out strings that are greater than 16 charac-
ters. However, the strlen command does not count the
null character. If the source string is exactly 16 characters
(not including the null character), it will pass the check
though it contains 17 characters, including the null charac-
ter. As a result, the null character does not get copied by the
strncpy command, creating a potentially dangerous
strcpy because the source is not null terminated. This type
of problem is difficult to catch during testing since it
requires a source string of exactly 16 characters. Also, the
bug may not manifest in an error in the output when such an
input is presented; this is likely the case if the character
after the temp array happens to be a null.

High Coverage Detection of Input-Related Security Faults

Eric Larson and Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48105

larsone@eecs.umich.edu, austin@eecs.umich.edu

5

6

unsigned int x;
int array[5];
scanf(“%d”, &x);
if (x > 4) fatal(“Index out of bounds”);
x++;
a = array[x];

Figure 1: Example of an array bounds error. This code segment
will overflow the array if x is 4.

5

10

11

char *bad_string_copy(char *src)
{
 char *dest;
 char temp[16];

 if (strlen(src) > 16) return NULL;
 strncpy(temp, src, 16);
 dest = (char *) malloc(16);
 strcpy(dest, temp);
 return dest;
}

Figure 2: Fault due to improper use of string library functions.
If src has 16 characters (not including the null character), it will
get copied into dest without a null character causing a problem
in the subsequent strcpy function.

One approach to prevent security exploits is to add run-time
support that will prevent malicious behavior. For example,
a technique created by Lhee and Chapin [20] append type
information to arrays and intercepts string functions to
ensure the bounds of the array are not exceeded. The added
run-time support remains with the program after it has been
deployed resulting in a performance penalty. To avoid this
penalty, software teams will sometimes employ testing
efforts to detect errors at design-time, thereby reducing the
need for run-time checking once the software has been
deployed. Often, dynamic bug detection tools are used to
aid validators by finding bugs that do not necessarily mani-
fest in an error in the program output. These tools use run-
time knowledge of all variables including pointers and vari-
ables that reside on the heap. Dynamic techniques can find
defects over a wide scope of the program including bugs
that span multiple function boundaries, library functions, or
even process boundaries. However, they are limited to
exposing only those defects that testers can expose. For
example, the bug in Figure 1 would only be detected when
the input value of four is provided. Without extensive test-
ing, dynamic techniques are best used to expose defects in
common-use scenarios.

In this work, we introduce a dynamic high coverage
approach to detecting security faults caused by improperly
bounded inputs. Our technique possesses the scope and pro-
gram knowledge of a run-time technique while relaxing the
requirement that the validator specify a set of inputs that
exposes the defect. We implement our approach by shadow-
ing all input values (and variables derived from input) with
a state variable. State variables are introduced into the pro-
gram when external inputs are read. External inputs encom-
pass a variety of sources: command line arguments, input
files, environment variables, and network data.

Integers are shadowed by an interval constraint variable
that stores the lower and upper bounds of the range of val-
ues that the given variable may hold. They have an initial
value indicating the input is unbounded with maximum
range that can be represented by the data type of the vari-
able. During execution, control tests and operators may nar-
row input interval constraints. Finally, at potentially
dangerous uses of inputs, such as array references and
trusted system calls, the entire range of an input value is
validated using the computed interval constraint. As a
result, all input-related faults are exposed for a given con-
trol path, even if the user-specified input did not directly

expose the fault.

In Figure 3, we show how our technique can find the off-
by-one error in the code segment from the example in Fig-
ure 1. In a conventional dynamic bug detection implemen-
tation, an error will not be detected unless x is four. In our
correctness model, we improve defect coverage by extend-
ing input values with interval constraints. When the value is
first read from input, it is given a range to span all possible
values. At the control points (after the if statement in the
example), the interval constraint can be narrowed because
the value of x is now known to be ≤ 4. When the value of x
is incremented, the interval is adjusted up by one on both
ends. When the array access occurs, the interval of x is
compared to the size of the array. Even though x has the
legal value of two, an error is flagged since it is possible for
the input to be five, which exceeds the bounds of the array.

Input strings are shadowed by state variables that hold the
maximum possible size of the string and a flag that indi-
cates if the string is known to contain a null character. Like
integers, strings from external input sources are considered
to have an unbounded maximum size. Control predicates
that test the length of an input string can decrease the maxi-
mum string length. The null flag is initially set on input
strings and is initially clear on uninitialized arrays. In order
to set the null flag, a string must be copied in a manner that
guarantees that null is set. String functions are checked to
ensure that all strings passed as a parameter are null termi-
nated and there is sufficient room in the destination string
for copy operations. Our approach will verify these func-
tions for all possible string lengths up to the maximum size
making it unnecessary for a test to have the exact string
length that can trigger an error.

The string example is revisited in Figure 4. Assume that the
input to the function is a null terminated string consisting of
8 characters taken directly from input. Upon entry to the
function, its maximum size will be unbounded. Though the
user entered an 8 character string, it could have an entered a
string of any length. Since the string has 8 characters it
passes the check but its maximum size is reduced to 17.
(We count the null character in our definition of string size.)
In the strncpy function, the maximum size of 17 can
exceed the available destination size limit of 16. Conse-
quently, there is no guarantee that the null character is cop-
ied, and the null flag remains off for the array temp. This
leads to an error when temp is used in the strcpy function

Code Segment Value of x Interval constraint on x
unsigned int x;
int array[5];
scanf(“%d”, &x);
if (x > 4) fatal(“Index out of bounds”);
x++;
a = array[x];

2
2
2
3

0 ≤ x ≤ ∞
0 ≤ x ≤ ∞
0 ≤ x ≤ 4

1 ≤ x ≤ 5 → ERROR!
Figure 3: Detecting an array bounds error. The error is detected even though the input value of 2 does not directly cause an error.

since it may not be null terminated. Even though the input
string of 8 characters does not expose the error, our
approach still detects it because all possible string lengths
are verified. It is also worth noting that our approach would
detect an error if the string src were directly copied into
dest in the strcpy instead of using the temp array. In this
case, the error would get signalled because the maximum
size of the source (17 characters) is greater than the destina-
tion (16 characters).

Our approach is generic and can be applied to all programs.
We have applied it to several programs and found a number
of bugs including two major security bugs in a recent
release of OpenSSH. It is portable and does not require any
modifications to the source code. Unlike techniques that are
designed to prevent malicious behavior while running, our
technique is intended to be used to find faults before soft-
ware is released. Given the degree of our analysis, the run-
time performance impact of our technique is fairly high,
making our approach only appropriate for the testing phase
of development. Another limitation of our approach is that
defect detection is control path sensitive. Good testing,
however, can mitigate this effect by covering all of the
interesting paths of a program.

The remainder of the paper is organized as follows. The
next section describes our method for detecting input-
related faults. Section 3 describes our methodology and our
dynamic bug detection tool. Section 4 shows the types of
bugs we have found using our approach and compares the
run-time performance to an uninstrumented version of the
program. Section 5 outlines related work, and Section 6

gives conclusions.

2. High coverage detection of software faults

Our high coverage scheme for detecting software faults
centers on verifying all possible input values at dangerous
points. At array references, the entire range of possible
index values are checked to ensure the array bounds are not
exceeded. This procedure is described in Section 2.1.
Unsafe string functions such as strncpy are checked by
assuming that input strings can have arbitrary length ini-
tially. String operations are checked to ensure there is suffi-
cient room to store the largest possible string. Section 2.2
details our technique. Section 2.3 lists other situations we
detect that lead to software faults.

2.1 Detecting dangerous array references

In order for an array reference to be considered safe, the
index must be checked to determine if it is possible to
exceed the bounds of the array. This is accomplished by
attaching interval constraint information be to every vari-
able that contains program input. To keep the maintenance
of bounds information manageable, we identify at run-time
which variables contain program input and only attach
interval constraints to these variables. We start with a model
of tainted data that is similar to that used in [1] and is sum-
marized in Figure 5. Data that comes from unbounded input
is considered tainted. Examples of unbounded input include
environment variables, command line inputs, data read
from files, and network packets. Tainted data is shadowed

Code Segment State for src State for temp State for dest
char *bad_string_copy(char *src)
{
 char *dest;
 char temp[16];

 if (strlen(src) > 16) return NULL;
 strncpy(temp, src, 16);
 dest = (char *) malloc(16);
 strcpy(dest, temp);
 return dest;
}

max_sz: ∞, known_null: T

max_sz: 17, known_null: T

max_sz: 16, known_null: F

max_sz: 16, known_null: F
max_sz: 16, known_null: F

ERROR (temp may not be null
terminated)

Figure 4: Detecting a string copy error. The error is detected because it is possible for the strcpy function to execute with a source
that is not null terminated.

Figure 5: Program states for integer variables.

TAINTEDUNTAINTED ERROR

Data from input is assigned
to variable.

Data not from input is
assigned to variable.

Bounds exceed run-
time size of array.

S

TAINTEDTAINTEDUNTAINTEDUNTAINTED ERRORERROR

Data from input is assigned
to variable.

Data not from input is
assigned to variable.

Bounds exceed run-
time size of array.

S

with interval constraint variables that track the lower and
upper bounds for the variable. When an access to an array
occurs, the bounds of the array index are compared with the
run-time size of the referenced array. An error is declared if
there is an index that can exceed the bounds of the array.
When a variable is assigned a value that is not dependent on
input (untainted), the destination variable is reset to the
untainted state. Since only tainted variables need interval
constraints, any variable transition from tainted to untainted
will release shadow state.

Since arrays may only be indexed by an integer, only vari-
ables with integer type (char, int, unsigned int,
etc.) can become tainted. When an integer variable becomes
tainted, it is assigned upper and lower bounds based on the
precision of the type. For unsigned integers, the lower
bound is zero. Otherwise, it is the most negative value the
variable can hold, based on type. Similarly, the upper bound
is the largest possible value.

As tainted variables are operated upon or tested with con-
trol predicates, their interval constraints must be adjusted
accordingly. Table 1 shows a list of representative opera-
tions and their effect on the upper and lower bounds of an
interval constraint. In the table, ticked variables a’, x’,
and y’ refer to tainted variables while y represents an
untainted variable. The notation x’.lb represents the lower

bounds of tainted variable x’. The expressions
MIN_VAL(a) and MAX_VAL(a) refer to the minimum and
maximum values that a can have based on its type preci-
sion.

For simple assignment operations (Rule 1), the bounds are
copied into the assigned value in most cases. However, it
may be necessary to restrict the bounds if the size of the
destination type is smaller than the size of the source type.
This may also occur when assigning a signed value into an
unsigned value. State propagations are also required when
integers are passed at function calls, returned from func-
tions, assigned within structures, or when copied by system
functions such as memcpy.

Addition and other arithmetic operations adjust the bounds
of the destination variable. In the first addition pattern
(Rule 2), a tainted value is added to an untainted value. The
bounds of the destination variable are computed by adding
the run-time value of the untainted variable to the bounds of
the tainted variable. If both variables are tainted (Rule 3),
the bounds are added together to form the new worst-case
bounds. Rule 4 singles out the modulus operator because
the new range is strictly dependent on the value of the sec-
ond operand. We also detect overflow situations; this is
mentioned in more detail in Section 2.3.

Table 1: Sample integer rules and their effect on the bounds. x’, y’, and a’ are tainted and y is untainted.

Rule Operation Input Interval Constraint

1 a’ = x’ a’.lb = max(MIN_VAL(a’), x’.lb)
a’.ub = min(MAX_VAL(a’), x’.ub)

2 a’ = x’ + y a’.lb = max(MIN_VAL(a’), x’.lb + y)
a’.ub = min(MAX_VAL(a’), x’.ub + y)

3 a’ = x’ + y’ a’.lb = max(MIN_VAL(a’), x’.lb + y’.lb)
a’.ub = min(MAX_VAL(a’), x’.ub + y’.ub)

4 a’ = x’ % y’ a’.lb = 0, a’.ub = max(abs(y’.lb), abs(y’.ub))

5 if (x’ < y) if (x’ < y): x’.lb = x’.lb, x’.ub = min(x’.ub, y - 1)
else: x’.lb = max(x’.lb, y), x’.ub = x’.ub

6 if (x’ < y’) if (x’ < y’): x’.lb = x’.lb, x’.ub = min(x’.ub, y’.ub - 1)
 y’.lb = max(y’.lb, x’.lb + 1), y’.ub = y’.ub
else: x’.lb = max(x’.lb, y’.lb), x’.ub = x’.ub
 y’.lb = y’.lb, y’.ub = min(y’.ub, x’.ub)

7 if (x’ == y) if (x’ == y): x’.lb = y, x’.ub = y
else if (x’.lb == y): x’.lb = y + 1, x’.ub = x’.ub
else if (x’.ub == y): x’.lb = x’.lb, x’.ub = y - 1
else: x’.lb = x’.lb, x’.ub = x’.ub

8 if (x’ == y’) if (x’ == y’): x’.lb = y’.lb = max(x’.lb, y’.lb)
 x’.ub = y’.ub = min(x’.ub, x’.lb)
else: x’.lb = x’.lb, x’.ub = x’.ub
 y’.lb = y’.lb, y’.ub = y’.ub

9 while (x’ < y) in loop: x’.lb = x’.lb, x.ub = min(x’.ub, y - 1)
after loop: x’.lb = max(x’.lb, y), x.ub = x’.ub

Rules 5-9 narrow the input interval constraint based on
knowledge gained from control predicates. In Rule 5, if the
if condition is true, the upper bound is reduced to y-1
unless the existing upper bound is already lower than y-1.
If the condition is false, the lower bound must be at least y.
Rule 6 refers to a situation where two tainted variables are
compared to one another. If x’ < y’ is true, then no change
is necessary to the lower bound of x’ and the upper bound
of y’. The upper bound of x’ must be at least one less than
the upper bound of y’ in order to make the equality true. x’
also cannot exceed its own upper bound. Similarly, the
lower bound of y’ is the maximum of the lower bound of
x’+1 and the lower bound of y’ before the statement.

The equality test to an untainted variable (Rule 7) will set
both bounds to y if the tainted value is indeed equal to the
value. If the tainted value x’ is not equal to y, there is no
change unless y happens to equal one of the bounds. In this
case, the bound is adjusted accordingly. While in this case it
would be possible to split the interval, this is not necessary
as only the lower and upper bounds are needed to validate
array accesses. In Rule 8, two tainted variables are com-
pared for equality. If they are equal, each variable will have
an identical new range that is formed and by taking the
highest lower bound and lowest upper bound. If they are
not equal, no change is made1.

The effect of a while loop comparison is shown in Rule 9.
When the body of the loop is entered, the condition x’ < y
is true and the bounds are updated appropriately. Upon exit-
ing the loop, the bounds are updated to reflect that the con-
dition is now false. for loops and do loops are handled in
the same manner except that the bounds are not updated
during the first pass in a do loop since the condition is not
tested until the end of the loop. The case where two tainted
values are compared as a loop condition is analogous to the
if statement.

Notable omissions from the list are the logical-or (||) and
logical-and (&&) operators. A simplification phase, dis-
cussed in Section 3, converts these short-circuited operators
into the appropriate if-then-else constructs.

To perform interval bounds checks, it is necessary to keep
track of the sizes of all arrays in the program. The size of
globally and locally declared arrays are known at compile-
time and are straightforward to process. Dynamic variables
pose an interesting challenge in our target language C.
Since all dynamic memory allocations are considered to be
untyped, we consider all dynamic allocations to be a single
array with a size equal to that of the memory allocation.

2.1.1 Array reference example

To illustrate our approach, we will describe a bug that was
discovered in OpenSSH. It occurred in the channel code
(channel.c). The relevant code is shown in Figure 6. In
function channels_new, the channels array is a dynami-
cally growing array with a size equal to channels_alloc.
The starting size of the array is 10.

Some time after channel_new is called, the function
channel_input_data is invoked. At line 36, an integer
is obtained from a packet using packet_get_int (an
OpenSSH function that grabs the next integer from the cur-
rent network packet). Upon return of packet_get_int,
id will be tainted with a lower bound that is equal to -∞ and
an upper bound equal to ∞. The value of id is passed into
the function channel_lookup, so the parameter id upon
entry will have the same bounds.

At line 46, there is a check to make sure that index is within
the bounds of the array. If the run-time value of id is out of
the range 0 ≤ id ≤ channels_alloc, the error would not
be detected since the function call returns before the array
access. At the array access in line 50, the interval constraint
of id has a lower bound of zero and an upper bound equal
to the run-time value of channels_alloc. The channels
array has a run-time size equal to channels_alloc,
indexed from zero to channels_alloc-1. Since the upper
bound of id is channels_alloc, it exceeds the bounds of
the array and an error is declared. If id is in the range 0 ≤
id ≤ channels_alloc, the error will be detected despite
the fact that an error only occurs when id equal to
channels_alloc. For any value of id that executes the
array access, our technique will detect the error. To fix this
bug, line 46 must be changed to use ‘>=’.

2.2 Detecting misuse of string functions

String functions such as strcpy can lead to software faults
since no check is performed to determine if the source
string will fit in the destination buffer. In order to check
these functions, strings that come from user input are
tracked. Since a string provided by a user can have arbitrary
length, our technique assumes that all input strings can have
infinite length initially. Comparisons made to the length of
the string adjust the maximum length of the string. When a
string copying function is called, the maximum length of
the string is checked to ensure it will fit in the destination.

Another common problem is manipulating strings that are
not terminated with a null character. While input strings
automatically may contain a null character when they are
first created, they could be copied using functions such as
strncpy which do not copy the null character in all cases.
Another common mistake is to forget that the strlen com-
mand does not include the null character in its count, lead-

1. There are some cases that we ignore where the bounds could be
adjusted. One example would be when the equality is false and
x’.lb == x.’ub == y’.ub. In this case, y’.ub should
be lowered by one. Such cases can easily be added if they result
in false alarms.

ing to an off-by-one error if used incorrectly. Since we
consider input strings to have an arbitrary length, it is not
necessary for a user to supply a string of the precise length
in order to find such errors.

All strings and arrays in the program are tracked with the
three fields: actual_size, max_str_size, and
known_null. The field actual_size stores the actual
run-time size of the array and cannot change (except for

calls to realloc). The field max_str_size stores the
maximum size of the string in the array. It refers to the larg-
est possible size of a string that a user can supply. For
example, strings that come from the command line have an
initial max_str_size of infinity (INT_MAX) and strings
that are created using fgets have a max_str_size equal
to the supplied limit. For arrays that do not contain strings,
max_str_size is equal to actual_size. The
known_null field is a flag that is true if the string is known

5

10

15

20

25

30

35

40

45

50

52

/* Pointer to an array containing all allocated channels. The array is
 * dynamically extended as needed. */
static Channel **channels = NULL;

/* Size of the channel array. */
static int channels_alloc = 0;

Channel *
channel_new(...)
{
 int i, found;
 Channel *c;

 /* Do initial allocation if this is the first call. */
 if (channels_alloc == 0) {
 channels_alloc = 10;
 channels = malloc(channels_alloc * sizeof(Channel *));
 ...
 }
 ...
 if (found == -1) {
 channels_alloc += 10;
 channels = realloc(channels, channels_alloc * sizeof(Channel *));
 ...
 }
 ...
}

void
channel_input_data(int type, int plen, void *ctxt)
{
 int id;
 Channel *c;

 /* Get the channel number and verify it. */
 id = packet_get_int();
 c = channel_lookup(id);
 ...
}

Channel *
channel_lookup(int id)
{
 Channel *c;

 if (id < 0 || id > channels_alloc) {
 log("channel_lookup: %d: bad id", id);
 return NULL;
 }
 c = channels[id];
 return c;
}

-∞ ≤ id ≤ ∞
-∞ ≤ id ≤ ∞

-∞ ≤ id ≤ ∞

-∞ ≤ id ≤ ∞

0 ≤ id ≤ channels_alloc

Figure 6: OpenSSH channel bug. The channels array has a size of channels_alloc. The bug occurs in channel_lookup
where it is possible to access channels[channels_alloc] which is outside the bounds of the array.

to contain a null. If it is false, it is not known if a null char-
acter is present or not present. During checking, we assume
that the string is not null terminated if known_null is false.
We will represent accesses to these fields using structure
notation: s.max_str_size refers to the field
max_str_size associated with the array s.

Strings can be created in a variety of ways as shown in the
first five rules of Table 2. Strings that come from the com-
mand line or environment variables (Rule 1 in Table 2) will
be marked as having an infinite maximum string size since
the user could have supplied a string of any length1. Since
these strings are automatically null-terminated, the
known_null field is set to true. String constants (Rule 2)
are not dependent on the user and thus have a maximum
string size equal to its actual size. Rules 3-5 assume the
arrays are uninitialized, making the initial value of the
known_null flag false. Initializers can be viewed as
assignments after the array has been created. Locally or
globally declared arrays (Rule 3), do not store strings when
they are first created and have a maximum string size equal
to its actual size. In most cases, dynamically allocated
arrays are processed identically to the creation of arrays
declared at compile-time (Rule 4). One exception is when
the size of the allocation is dependent on the size of another
string. This case (Rule 5) is described in the next paragraph.

Similar rules exist for calloc, except that known_null is
initialized to true.

In order to properly adjust the maximum size of a string, it
is necessary to track integers that store string lengths. Any
integer that is storing a string length will have state that
stores the starting address of the corresponding string
(denoted using the field string). In addition, a
size_diff field is also stored that is the difference
between the value stored in the integer and the actual length
of the string. This is important as our approach includes the
null character in the length of a string while the strlen
command does not. Therefore, the initial size difference for
a strlen result is -1. In Table 2, variables that store string
lengths are represented with two tick marks (such as n’’).
Rule 6 shows the strlen call. Since strlen requires the
input string to be null terminated, a check is made to make
sure that is the case. Addition and subtraction operations
(Rule 7) on the string length adjust the size difference
appropriately. For example, adding one to a strlen result
to account for the null character will result in a size differ-
ence of zero. The maximum length of the string can be
reduced with a control operation; this is illustrated in Rule
8. If (n’’ <= c) is true, the maximum size of the string s is
adjusted to c + n’’.size_diff unless the maximum size
is already smaller. If (n’’ <= c) is false, no adjustment is
made to s since there is no restriction on the maximum size
of s. Refer back to Rule 5 where a string length is used as
the size parameter to a dynamically allocated array. This is

Table 2: Representative Rules for String Buffer Overflow Checking. s is an array, p is a pointer, n and c are integers, and m’’ and
n’’ are integers that store a string length.

Array Creation

1 s = argv[i] s.actual_size = strlen(s)+1; s.max_str_size = INT_MAX; s.known_null = TRUE;

2 s: string constant s.actual_size = s.max_str_size = strlen(s)+1; s.known_null = TRUE;

3 char s[n] s.actual_size = s.max_str_size = n; s.known_null = FALSE;

4 s = malloc(n) s.actual_size = s.max_str_size = n; s.known_null = FALSE;

5 s = malloc(n’’) s.actual_size = n’’;
s.max_str_size = (n’’.string).max_str_size + n’’.size_diff;
s.known_null = FALSE;

String Length Manipulation

6 n’’ = strlen(s) Assert: s.known_null == TRUE
n’’.string = s; n’’.size_diff = -1;

7 n’’ = m’’ + 1 n’’.string = m’’.string; n’’.size_diff = m’’.size_diff + 1;

8 if (n’’ <= c) if (n’’ <= c) (n’’.string).max_str_size =
 MIN((n’’.string).max_str_size, c + n’’.size_diff);
NOTE: no change is necessary if (n’’ > c)

Basic Array Operations

9 s[n] = c if (c == 0) s.known_null = TRUE;

10 *p = c if (c == 0) (p.array_base).known_null = TRUE;

1. We conservatively use infinite size even though the operating
system imposes a limit on the length of a command line.

commonly done before a string copy to ensure the destina-
tion as enough space to hold the source string. As a result,
the field max_str_size of the newly allocated region is
initialized to properly reflect the maximum size of
n’’.string rather than using n’’. Our current implemen-

tation limits the usage of string length integers. We do not
handle arithmetic operations except addition and subtrac-
tion and we do not handle operations that involve two string
length integers. For more information on these restrictions
and the limitations they cause, see Section 3.1.

Table 3: Representative Rules for String Buffer Overflow Checking (continued). s, d, set, fmt are strings, and p is a pointer to a
string. n is an integer and refers to a parameter that restricts the number of a characters written into a destination buffer. The macro
SIZE(s) is equal to MAX(s.actual_size, s.max_str_size).

String Functions

11 strcpy(d,s) Assert: s.known_null == TRUE
Assert: s.max_str_size <= SIZE(d)
d.max_str_size = s.max_str_size; d.known_null = TRUE;

12 strncpy(d,s,n) Assert: s.known_null == TRUE
Assert: (n <= SIZE(d))
d.max_str_size = MIN(s.max_str_size, n);
d.known_null = (s.max_str_size <= n);

13 strcat(d,s) Assert: s.known_null == TRUE && d.known_null == TRUE
Assert: s.max_str_size <= SIZE(d) - strlen(d)
d.max_str_size = s.max_str_size + strlen(d);
d.known_null = TRUE;

14 strncat(d,s,n) Assert: s.known_null == TRUE && d.known_null == TRUE
temp_src_size = MIN(n + 1, s.max_str_size)
Assert: temp_src_size <= SIZE(d) - strlen(d)
d.max_str_size = temp_str_size + strlen(d);
d.known_null = TRUE;

15 strchr(p,s)
also: strrchr

Assert: s.known_null == TRUE
if (p) p.array_base = s;

16 strstr(p,s,set)
also: strpbrk, strppbrk, strtok,
strsep

Assert: s.known_null == TRUE && set.known_null = TRUE
if (p) p.array_base = s;

17 d = strdup(s) Assert: s.known_null == TRUE
d.actual_size = d.max_str_size = s.max_str_size;
d.known_null = TRUE;

18 fgets(d, n, stream) Assert: n <= SIZE(d)
d.max_str_size = n; d.known_null = TRUE;

19 gets(d) Automatic error!
d.known_null = TRUE;

20 scanf(fmt, d)
Also: fscanf, sscanf

Get width from fmt (width = 0 if no width was given)
Assert: width != 0 && width <= SIZE(d)
if (width != 0) d.max_str_size = width;
d.known_null = TRUE;

21 sprintf(d, fmt, s) Assert: s.known_null == TRUE
Check to make sure the sum of all source strings does not
exceed SIZE(d), non strings are ignored in this calculation
d.known_null = TRUE;

22 snprintf(d, n, fmt, s) Assert: s.known_null == TRUE
Assert: n <= SIZE(d)
If the sum of all source strings exceeds SIZE(d), then
d.known_null = FALSE; otherwise d.known_null = TRUE;
d.max_str_size = n;

23 strcmp, strpos, strrpos, strspn,
strcspn, atof, atoi, atol, str-
tod, strtol, strtoul, strcoll

Check that all input source strings are null terminated.

Assigning zero to an element of an array will set the
known_null flag to true (Rule 9). An assignment of a
value other than zero has no effect on the state of the array.
The known_null flag is also set to true when functions
bzero and memset (to zero) are called. String arrays are
often accessed via pointers. This case is handled by shad-
owing the pointer with the base address of the array
(denoted using array_base). Pointers that do not point to
arrays are not shadowed. In the event, the string is
addresses using an interior pointer, the state of the array is
obtained using the shadowed base address. This is illus-
trated in Rule 10. For brevity, we will omit this level of
indirection and assume arrays are used in all future rules.

Table 3 shows how string library functions are handled.
Rules 11 and 12 illustrate how string copies are handled. In
strcpy, the source must be null terminated and the size of
the maximum string size must fit in the destination. The
size of the destination is determined by taking the maxi-
mum of actual_size and max_str_size. In the case
where max_str_size is larger than actual_size,
max_str_size is chosen since the only way this situation
can occur is when the array was dynamically allocated with
a string length. Our approach naively assumes that the
string length used referred to the length of the source string.
This assumption could lead to undetected bugs and is dis-
cussed in more detail in Section 3.1. For brevity, we use
SIZE(s) = MAX(s.actual_size, s.max_str_size)
to represent the size of the destination buffers. If both the
null check and size check pass, the destination will then
have known_null set to true and a max_str_size equal
to that of the source. In strncpy, a check ensures that the
destination size is less than the supplied size (n) parameter.
This is done regardless of the size of the source string since
nulls are padded at the end if the source is smaller. The des-
tination will have a max_str_size that is the smaller of n
and max_str_size of the source. The known_null is
only true if the entire source string is copied.

The strcat functions (Rules 13 and 14) are handled simi-
larly to strcpy. The key differences are the destination
must be null terminated and the run-time size of the destina-
tion string is subtracted from the size comparisons. Unlike
strncpy, strncat will always add a null character and as
a result could copy n + 1 characters. The substring extrac-
tion functions (Rules 15 and 16) check for null terminated
input strings. The destination, if not NULL, is a pointer to
somewhere in the original source string. As a result, the
pointer gets shadowed with the address of the source string.
This has the effect of assuming that the substring is identi-
cal to the original string, which in the worse case, could be
true. Token extraction routines such as strtok are handled
the same way, each token is the assumes to be the same size
of the original source string. The strdup function (Rule
17) is straightforward. A new string is created with the
exact same characteristics as the source string.

Strings that come from input functions such as fgets (Rule
18) will have a maximum size equal to the size that was
supplied as the limit to the function and are null terminated.
These input functions are checked to ensure that input will
fit in the supplied buffer. As a result, the function gets
(Rule 19), which has no checking, automatically flags an
error each time it is used. The scanf family of functions
(Rule 20) are also unsafe unless a field width is supplied for
each input string. If a field width is present, it will checked
to ensure the input string fits in the destination buffer. The
function sprintf (Rule 21) is implemented to ensure that
the sum of the maximum sizes of all source strings does not
exceed the destination size. In snprintf (Rule 22), the
size is limited by the size parameter but null is not written if
the source strings can exceed the destination. String func-
tions that only read strings only check to see if all input
strings are properly null terminated (Rule 23).

A programmer may mimic the behavior of a strcpy by
using a pointer to walk the elements of an array and copy-
ing each element individually. Copying via indirect refer-
ences (*d = *s, for example) does not alter state unless the
last element of the array s is copied into d. In this case, we
assume that the entire array is copied from s into d and the
statement is treated like a string copy. While this is not the
case in all situations, current tool limitations prohibit more
sophisticated analysis. This is addressed as future work.

2.2.1 String example

A detailed example illustrating how string errors can be
found is shown in Figure 7. The two buffers buf0 and buf2
have an initial maximum size equal to their static sizes. In
line 6, the input value argv[1] is copied into buf0 using
strncpy. While the specified size of 12 does not cause an
overflow, the null flag for buf0 remains off since a null
would not have been copied if argv[1] has at least 12
characters. The strdup in line 7 will duplicate the state
values of argv[2] into buf1. If value is true, execution
will continue to line 10 where the pointer p is assigned to
point to the second element of buf0. This causes p to be
shadowed with the base address of buf0. When p is used in
the strcpy, an error gets properly signalled because buf0
may not be null terminated. In the case where value is
false, a comparison is made based on the length of buf1.
Assuming it is less than or equal to 6, control will be taken
to line 14 and the maximum size of buf1 will be restricted
to 7 (6 plus 1 for the null character that strlen does not
count). The known_null flag is set for buf0 in line 14. In
line 15, an error results because the sum of the maximum
sizes of the two source buffers (19) can exceed the size of
the destination (18).

2.3 Other improper uses of input data

Our approach can also be used detect other situations where

input data could be used dangerously and possibly lead to
software faults. Unconstrained input used to control the
number of loop iterations, the size of a memory copy, or the
size of a memory allocation could be dangerous [1]. We
check to make sure that the variables controlling these uses
have been constrained in some fashion. An error is sig-
nalled if the upper bound is equal to the maximum value
allowed by the type of the variable. An error is also
reported if the value could be negative. For these situations,
it is important to note that these types of uses are not always
errors. In some cases, input is constrained later within the
loop and malicious behavior is properly thwarted. In other
cases, the loop may not do anything that can be exploited.
Memory allocations are likely not dangerous if the output is
properly checked to ensure the allocation was successful.

Another related problem is arithmetic overflow. A common
example of the case of adding two large signed integers
where the destination is not large enough to store the result,
leading to a negative number with large magnitude. As with
the previous case, this usually occurs when input data is
unconstrained. Overflow and underflow is detected using
the bounds associated with integers. Once an operation is
completed, the resulting upper and lower bounds are ana-
lyzed to determine if it can fit into the destination variable.
An error is signalled if the resulting value cannot fit.

While this type of problem doesn’t necessarily lead to an
security exploit, it often does. For example, we describe
another security bug found in OpenSSH. The code is listed
in Figure 8. Data is received from a packet and then is sub-
sequently used to allocate an array. At the time of the mal-
loc, no restriction has been placed on the input. A

malicious user could supply an extremely large value in
order to cause an overflow on the multiplication in the
malloc call resulting in a small allocation. Since the same
input value controls the number of iterations within the loop
that follows, the array accesses within the loop can be used
to access memory outside of the array.

Our approach can also be used to find potential bugs when
integers are casted. For example, an assignment of a signed
long integer into an unsigned short integer can be problem-
atic if the signed long integer has a negative value or a
value larger than the maximum size of the unsigned short
integer. However, during our testing, we were unable to
find any defects due to improper casting. We did find sev-
eral cases where casting of this sort was done intentionally
and correctly causing false alarms. As a result, we disabled
casting checking for our experiments in Section 4.

3. Implementation

Our dynamic checker is built on a general purpose source-
level instrumentation tool, called MUSE, that we designed
to facilitate the construction of dynamic defect detection
tools. Unlike most dynamic verifiers that focus on one par-
ticular property, our system is general purpose. A user,
using our checking specification language, can specify pro-
gram properties they wish to validate.

MUSE is a source-level general purpose program instru-
mentation tool, allowing users to specify the properties they
are interested in checking. The tool is built as a compilation
phase in the GNU GCC compiler. Given a hand-written
model of program correctness, MUSE will automatically

5

10

15

16

char buf0[12];
char *buf1;
char buf2[18];
char *p;

strncpy(buf0, argv[1], 12);
buf1 = strdup(argv[2]);

if (value) {
 p = buf0 + 1;
 strcpy(buf2, p);
}
else if (strlen(buf1) <= 6){
 buf0[12] = 0;
 sprintf(buf2, “%s%s”, buf0, buf1);
}

buf0.max_str_size = 12, buf0.known_null = FALSE

buf2.max_str_size = 18, buf2.known_null = FALSE

buf0.max_str_size = 12, buf0.known_null = FALSE
buf1.max_str_size = ∞, buf1.known_null = TRUE

p.array_base = buf0
p.array_base is buf0 → buf0.known_null == FALSE → ERROR

buf1.max_str_size = 7, buf1.known_null = TRUE
buf0.max_str_size = 12, buf0.known_null = TRUE
(buf0.max_str_size + buf1.max_str_size = 19) > (buf2.max_str_size = 18) → ERROR

Figure 7: Example of detecting string bugs. The strcpy in line 11 can fail because buf0 is not null terminated. The sprintf in line
15 can fail because the sizes of the two source strings could exceed the size of the destination.

5

7

 unsigned int nresp;
 nresp = packet_get_int();
 if (nresp > 0) {
 response = malloc(nresp * sizeof(char*));
 for (i = 0; i < nresp; i++)
 response[i] = packet_get_string(NULL);
 }

0 ≤ nresp ≤ ∞

1 ≤ nresp ≤ ∞
1 ≤ nresp ≤ ∞

Figure 8: OpenSSH challenge bug. Unbounded data from a packet can cause overflow when calling malloc.

locate the instrumentation points used by the model, graft in
the necessary program instrumentation, and link in any
needed additional run-time support. No modifications to the
program source code are needed. When the instrumented
program is executed, any violations of the correctness prop-
erties specified are detected and reported to the user. Pro-
gram instrumentation is performed at the abstract syntax
tree (AST) level, thus source code is required to add instru-
mentation. Functions without source code, such as system
libraries, may be instrumented at their entry and exit points.

The first step of the instrumentation process is to simplify
the program. We convert the program into Elemental C, an
intermediate C representation similar to the simple gram-
mar developed by Hendren et al. [15]. The purpose of sim-
plification is to reduce the complexity of identifying and
instrumenting relevant program points. Complex C state-
ments are broken down into simple statements with at most
two operands and a single assignment to an l-value (such as
a = b + c). Side effects and short-circuited operators are
eliminated via program transformations.

The MUSE correctness specification consists of program
source patterns and associated model actions that are speci-
fied as a collection of <pattern, action> tuples. Program
source patterns are simple regular expressions, including
wildcards, that are matched against elemental C statements.
The actions are completely written in C and contain the
instrumentation functions that perform state management
and error checking. Actions are compiled with the instru-
mented program to form an instrumented executable. The
patterns correspond to complete statements or subexpres-
sions within the elemental C language. In addition, patterns
exist that match special program events. Examples of spe-
cial events include the beginning of a function or use of a
variable as an r-value. It is beyond the scope of this paper to
present the specification language.

During the instrumentation phase, the patterns are parsed
and the program is traversed one elemental C statement at a
time. When there is match, the action code is inserted at the
matching site. Instrumentation can either be added before
or after the matching site depending on how the instrumen-
tation was specified. In addition, various run-time values
may be passed to the instrumentation in order to parameter-
ize model actions. After instrumenting the program AST,
the remaining compiler phases are executed to produce an
instrumented executable. Compiler optimizations may be
enabled during this portion of the compilation. Optimiza-
tions can recoup some of the performance penalty that is
incurred by instrumentation.

The model is implemented using three tables that contain
the shadowed state associated with the variables. One table
stores state for arrays, another for pointers, and one for inte-
gers. All arrays are inserted in the array table when they are
created and are indexed by their base address. Each entry in

the array table contains four fields: actual_size,
max_str_size, known_null, and is_input. The first
three fields are described in Section 2.2. The actual_size
field is also used in the array reference checking. The
is_input field is used to mark arrays that contain program
input. If an array from input is used in a function that con-
verts a string to an integer, such as atoi, the resulting inte-
ger will be treated as input. The pointer table only stores
pointers that refer to an array and are indexed by the
address of the variable. Each entry contains a single field,
the base address of the array that the pointer points to. The
integer table also only contains entries for integers that
require shadowed state. An integer can require state for
three reasons: (a) it contains input data, (b) it contains string
length data, or (c) it is a boolean value that will narrow the
bounds if used in a conditional expression. A flag is used to
distinguish between the three cases. In case (a), there are
upper and lower bound fields as described in Section 2.1. In
case (b), there are string and size difference fields as in Sec-
tion 2.2. In case (c), the entry contain an address indicating
the variable to be updated, the appropriate bounds (lb, ub,
and max_str_size) when the condition is true and bounds
for when the condition is false. If the conditional value is
used in a control statement, the bounds of each variable is
updated using this information.

When an error is detected, the error message will displayed
that includes the file name, line number, matching MUSE
pattern, and a descriptive message describing the error. The
error is detected at the point of the dangerous use such as an
array reference or string function. However, the source of
the error may not be near the dangerous use. With the help
of a debug mode, that prints out a message every time state
has changed, it was usually very straightforward to find the
source of the error or to classify the bug as a false alarm.

3.1 Limitations

Since our approach is dynamic and relies on the particular
control path taken through a program, it is an unsound
approach, meaning that is possible to miss the detection of
actual bugs. With respect to a particular control path, our
approach is also unsound. One problem stems from the use
of run-time data. An example is detecting when a zero gets
written into an array (see Rules 9 and 10 in Table 2).
Another case is the actual size of the array is used during
array checks. On a different run with the same control path,
the size of the array, if controlled by input, could be smaller
and be subjected to an array buffer overflow. This is illus-
trated in Figure 9. The size of the array is controlled by user
input and could be any value from 1 to 10. However, the fil-
ter of illegal accesses for the index in line 13 is valid when
the array size if 10 and invalid for all other accesses. As a
result, an error will be missed if 10 is supplied as the array
size.

Fully addressing these problems would require symbolic
analysis. Other shortcomings occur due to a lack of sym-
bolic analysis. While most result in false alarms, a case that
results in a missed bug is when the string length of is used
to allocate an array and a subsequent strcpy operation
copies an entirely different string into the destination. This
is a bug if the size of the second string is larger than the
first. If the max_str_size of the first string is high, an
error will likely be missed. However, using actual_size
results in too many false alarms. Lastly, we are also
unsound in that we do not attempt to catch every type of
buffer overflow that is possible.

Our technique is also incomplete in that can produce false
alarms, signalled bugs that are not actually bugs. As eluded
to earlier, these often occur due to a lack of symbolic analy-
sis. Not all possible relationships between different strings
or variables are tracked and this can cause operations that
narrow bounds to be missed. A specific example of where
symbolic analysis is not present is the limited functionality
associated with integers that store string lengths. When an
unsupported operation occurs, a warning is emitted, and the
result is no shadowed. Another problem arises in that our
technique does not keep track of which position the null
character is in. In order to maximize the number of detected
bugs, we assume it is in the last position. This assumption
also leads to an increase in false alarms. In practice, we
found the number of false alarms to be manageable. We
describe the false alarms triggered in Section 4.1.

4. Results

Our dynamic input analysis checker has been applied to the
eight programs listed in Table 4. Programs were compiled
using GNU GCC with an -O4 optimization level. Using
these programs, we sought to find bugs and measure the
effect our instrumentation had on run-time performance.

Three of the programs (anagram, ks, and yacr2) are from
the pointer-intensive benchmark suite [26] and were
selected due to difficulty of analyzing these programs stati-

cally. Each benchmark included several test inputs. All
inputs were run for testing purposes. For performance test-
ing, the largest input was selected.

The other five programs are networking applications. The
popular secure shell program openssh was tested by target-
ing the two known bugs that were discovered. Additional
testing focused on different modes in both the server and
client. Performance testing was done used a scripted ses-
sion that involved transferring large files and does not
attempt to exhaustively execute all of the code. We also
tested gaim, a popular instant messaging program. Testing
was purely interactive and several different instant messag-
ing protocols (MSN, Yahoo, etc.) were used. The one bug
found in gaim was in the initialization code and was inde-
pendent of the protocol used. Due to the interactive nature
of gaim, it was not used in the performance experiment. For
the FTP and web servers, testing was done by having the
server process several FTP and HTTP requests in different
configurations. Performance testing was done by a script
that consisted of several requests for a file or web page.

In our testing, we did not strive to exhaustively test all pos-
sible code within a program. Using MUSE, the user can add
a coverage mechanism similar to one in [14]. The coverage
technique may be used to make sure that all potentially dan-
gerous statements (array references, pointer dereferences,
and string functions) are executed at least once. Like nor-
mal statement coverage, executing all of the dangerous
statements once does not guarantee that all bugs will be
found since bugs could be dependent on the particular con-
trol path that is executed.

4.1 Bugs Detected

With our tool, we were able to find 16 bugs, shown in Table
4. In order to compare our results with static analysis, we
used the tool from [29] and analyzed six of the eight pro-
grams. Problems processing the source code prohibited
analysis of gaim and openssh. The tool was unable to detect
any of the bugs that were discovered using our approach
and did not detect any additional bugs.

5

10

14

unsigned int size;
unsigned int index;
int *array;
int x;

size = getchar();
if (size <= 0 || size > 10) exit();
array = (int *) calloc(size, sizeof(int));

/* initialize array */

index = getchar();
if (index < 0 || index > 9) exit();
y = array[index];

Figure 9: Example of an unsound control path. This code
segment will overflow the array if x is 4.

Table 4: Programs used during testing

Program Description of Program Defects
Found

False
Alarms

anagram anagram generator 2 0
betaftpd file transfer protocol daemon 1 1
gaim instant messenger 1 1
ghttpd web server 3 2
ks graph partitioning 4 0
openssh openssh secure shell 3 1
thttpd web server 0 1
yacr2 yet another channel router 2 1

Two of the three defects found in openssh (described in
Section 2) are both security flaws present in version 3.0.2.
The channel id bug would be difficult to locate via static
analysis. The array is dynamically allocated and its size can
change during execution. In addition, creation of the array,
reading of input, and accessing the channel array each
occur in three distinct functions. Any static approach to
locating this bug would require interprocedural analysis.
The third defect discovered in openssh is an addition over-
flow problem where two numbers read from network data
are added together. While this bug does not create a security
exploit or a crashing program, it could lead to unexpected
program behavior.

In gaim, a defect occurs when reading the configuration
file. Each field is placed into a large temporary buffer. The
fields are processed and copied into the appropriate data
structure. In some cases, the fields are copied into a smaller
buffer without checking to see if it will properly fit. Exam-
ples of fields where this occurs are the username and pass-
word. While this bug could not be exploited remotely, it
could cause the program to crash. The three defects in ght-
tpd were all due to misuse of string functions. In one case, a
strncat function contains a limit that does not account for
the null character. For a given limit n, it is possible for n +
1 characters to be written since a null character is always
written. Another defect was caused by calling strstr on an
uninitialized local array. The third defect in ghttpd and the
defect found in betaftpd were the result of using data
received from the network without any guarantee that there
is a null character.

One bug in anagram permits a user to overflow a buffer
with characters from an input file. The buffer is dynami-
cally allocated in proportion to the size of the input file.
Extra space is added to store additional information about
each word in the file. The size of the extra space is con-
trolled by a fixed compile-time constant representing the
maximum number of words allowed in the file. If the file
contains more words than this constant, the buffer could
overflow. The other bug is the result of using gets, auto-
matically a dangerous function. In ks, two bugs resulted
from an input being used to reference an array without any
checking to see if it exceeded the array bounds. The other
two defects were due to undetected arithmetic overflow
with an input value and a loop based on input that is not
checked. Both defects discovered in yacr2 were due to a
multiplication overflow. These bugs are very similar to the
OpenSSH challenge bug in Figure 8.

Another important factor in bug detection systems is the
number of false alarms - situations where an error is sig-
nalled when no defect occurs. During the course of our test-
ing, we detected seven false alarms. Three of the seven
cases (betaftpd, gaim, ghttpd) were situations where a loop
controlled by input did not result in a bug. The other false

alarm in ghttpd was due to sprintf function that was used
to concatenate two strings into a new string. The destination
buffer had a size equal to the combined sizes of the two
strings. This is a case where lack of string length support
for the addition of two string lengths leads to a false alarm.

In openssh, an arithmetic overflow bug was detected but a
consistency check after the operation would correctly signal
a failure. In thttpd, a false alarm occurs because our
approach conservatively assumes that the null character is
in the last possible position and does not track the precise
location of the null character within an array. A buffer over-
flow is signalled incorrectly because the program guaran-
tees that a null is in the first position of an array. The false
alarm in yacr2 is due to reading the input file twice. It is
read once to set the array sizes and a second time to initial-
ize the array values. Since the array sizes were based on the
input, no errors can occur. Our tool currently has no mecha-
nism for determining that the input is actually constrained
when it is read the second time.

4.2 Performance

In order to test run-time performance, all of the programs
were run on a lightly loaded 1.8 GHz Pentium IV computer
running Linux. Program run-times measured using the Unix
time command were compared to an uninstrumented pro-
gram running the same test input. The results of the experi-
ment are shown in Table 5. It is important to point out that
we have not focused any effort on performance optimiza-
tion at this point. The results show that there is a large
opportunity for improvement possible. The amount of
slow-down experienced is dependent on the program. The
five server programs exhibited the least amount of slow
down with betaftpd having the least with 13x. The three
pointer intensive benchmarks suffered significant slow-
down from a factor of 162x in anagram to 220x in ks. The
disparity in the results can be attributed to the fact that the
pointer intensive benchmarks have more integer processing
than the servers.

The breakdown of the dynamic instrumentation sites is
shown in Table 6. Array state sites keep track of array
information such as dynamic array sizes and state associ-
ated with strings. Array references sites include a call to an
array reference check function when the index has been
controlled by input. Pointer manipulation sites are calls to
track pointers with their associated array. Integer state sites
call an associated function to propagate and adjust interval
constraints and string lengths. Control points are calls that
narrow interval constraints or maximum string lengths.
String functions sites include calls to check the input
strings. Other includes miscellaneous instrumentation that
does not fit the earlier categories. The Useless column
refers to instrumentation that did not manipulate any of the
instrumented states. This includes 1) integer operations and

control points that did not manipulate input data or string
lengths, 2) pointer operations that were not associated with
an array, and 3) array references that did not have an index
that was controlled by input. Clearly, a high percentage of
instrumentation calls perform no useful action. Many of
these instrumentation sites could likely be eliminated by
introducing instrumentation-specific optimizations to the
compiler, such as performing copy propagation for interval
constraints. Eliminating useless instructions will also
reduce the code size overhead. Programs with the fewest
number of useless instrumentation exhibited the largest
slowdowns. This is to be expected because a useful instru-
mentation site executes more code than a useless one. The
effect on code-size is fairly significant. While the instru-
mentation functions consume 91KB of space, most of the
overhead is due to the added instrumentation calls.

Another interesting statistic is the percentage of array
accesses on the heap, shown in the last column of Table 5.
Heap array sizes are not generally known at compile-time;
thus they are more challenging to analyze statically. The
programs betaftpd, thttpd, and yacr2 have more heap array
references than non-heap array references. In fact, yacr2
has no non-heap array references. The other programs have
significantly fewer non-heap array accesses with ks and
ghttpd having none.

5. Related Work

Several dynamic defect detection tools have been devel-
oped. Haugh and Bishop [14] check all of the interesting
string library functions by comparing the allocated sizes of
the arrays. This approach is similar to our string library
maximum size checks. Their tool tracks coverage to ensure
that each interesting string function is executed once. Our
technique can potentially find more defects because it
checks for proper null termination and array references.
Examples of memory access checking tools include GNU’s
checker [6] and Purify [13] which detect memory bugs by
keeping track of the state of dynamically allocated memory.
Electric Fence [24] places inaccessible pages before and
after each dynamically allocated object. A segmentation
fault occurs if an access occurs outside the object. CCured
[22] uses static program analysis to prove as many pointers
to be memory safe as possible. For pointers where this is
not possible, run-time checks are inserted into the program.
Safe C [2] associates extra state with each pointer that holds
the bounds of the object the pointer references. Accesses
are compared to the bounds to see if an error occurs. Para-
soft’s Insure++ [23] checks for a variety of different errors
such as memory reference errors, memory leaks, unsafe I/O
operations and data conversion errors. The checking is
accomplished by adding checking and testing instrumenta-
tion around each line of source code. CodeCenter [19]
interprets C code and provides run-time type checking and

Table 5: Run-time performance. Performance slow-down is large for computation heavy programs such as anagram and yacr2. The
slow-down is considerably less for server programs openssh and thttpd.

Program Simple
Stmts

Code Size (Kb) Run Time (seconds)
Static Sites Dynamic Sites Heap Array

RefsOrig New Increase Orig New Increase

anagram 1,274 11 190 16.8 0.11 17.79 162 920 69,881,404 10.3%
betaftpd 6,325 31 657 21.1 0.08 1.09 13 5,363 3,768,054 69.2%

gaim1 374,623 1620 35500 21.9 N/A N/A N/A 262,303 N/A 11.0%

ghttpd 3,755 27 424 15.6 0.34 6.70 20 3,971 97,017,000 0.0%
ks 2,066 13 237 18.0 8.75 1923.62 220 2,086 1,889,043,968 0.0%
openssh 155,835 885 9235 10.4 0.02 0.38 19 105,900 421,551 1.8%
thttpd 22,758 138 2301 16.7 0.32 8.47 26 15,530 29,210,392 50.0%
yacr2 7,999 33 786 23.8 0.55 96.79 176 6,454 392,839,706 100.0%

1. Due to the interactive nature of gaim, we were unable to accurately measure its run time performance.

Table 6: Breakdown of dynamic instrumentation calls.

Program Array State Array
References

Pointer
Manipulation Integer State Control Points String

Functions Other Useless

anagram 2.7% 0.9% 15.0% 3.7% 1.3% 0.0% 2.8% 73.7%
betaftpd 4.4% 0.0% 10.1% 0.0% 0.0% 0.0% 4.3% 81.2%
gaim 2.7% 0.0% 13.2% 1.9% 0.4% 0.4% 4.7% 77.3%
ghttpd 0.8% 0.0% 1.6% 0.0% 0.0% 0.3% 0.5% 96.7%
ks 0.0% 0.7% 34.2% 7.5% 6.3% 0.0% 1.1% 50.1%
openssh 2.1% 0.0% 2.6% 5.7% 3.6% 2.1% 5.1% 78.8%
thttpd 2.4% 0.0% 14.3% 3.1% 1.4% 0.2% 0.8% 77.8%
yacr2 0.7% 7.6% 3.3% 11.3% 1.4% 0.0% 1.2% 75.2%

memory access checking. Fuzz testing [12] found several
bugs by injecting a random input stream into Windows and
UNIX applications. The work clearly demonstrates that
even mature programs pose vulnerabilities to improperly
bound inputs.

Several efforts have focused on preventing malicious
behavior [8, 20, 21, 25]. The taint mode of Perl [25] can be
used to prevent untrusted programs from gaining superuser
access. StackGuard [8] is a run-time approach that adds a
randomized canary word just below the return address. If
the canary word is modified, an error occurs. Buffer over-
flow attacks that overwrite the return address will also over-
write the canary word negating a jump to the attacker’s
code. Wahbe et al. [30] introduce address sandboxing. An
untrusted code module (binary) is instrumented to restrict
accesses to that module’s segment(s). Related to the issue
of security is trust. Proof-carrying code [21] involves
embedding a proof into a binary that shows the code satis-
fies a particular property. An untrusted binary can be veri-
fied to see if the proof is valid.

Earlier efforts have used similar bug detection techniques,
but the analysis is performed at compile-time using sym-
bolic execution [1, 5, 7, 9, 27, 29]. In these systems, input
values are assumed to take on any value and symbolic cal-
culations are used to check if array accesses are within the
bounds of the array. Coen-Porisini et. al. [7] give a good
overview of the approach for a subset of the C program-
ming language and have applied their technique to safety-
critical software systems. The advantage of our approach is
that our analyses can yield greater precision since they can
use run-time information in situations that are difficult to
analyze statically. In [1], Ashcraft and Engler constructed
models to catch inappropriate uses of tainted data. In their
model, tainted data becomes untainted if any check occurs.
They only validate that checks are executed. Their
approach is unable to determine if the checks are correct.
While they have some support for finding errors across
functions, their analysis is predominantly local. They have
found several bugs in Linux and OpenBSD. PREfix [5]
uses a bottom-up approach for model checking. The call
graph for the program is created and leaf functions are pro-
cessed first and replaced with a summary model when
called by other functions. Evans and Larochelle [9] and
Rugina and Rinard [27] use static analysis to find potential
buffer overflows. In [29], arrays or strings are represented
as ranges and the problem is transformed into a system of
integer range constraints.

Another method for preventing malicious behavior is to
enforce safety at the programming language level. Cyclone
[18] is a modified form of C that checks pointer accesses
using fat pointers. The programmer can limit the number of
checks by declaring pointers to be safe. To ensure safety,
additional restrictions (for example, disallowing arithmetic)

are placed on safe pointers. Shankar et. al. [28] introduce a
tainted type qualifier to detect vulnerabilities in format
strings at compile-time. Data that come from untrusted
sources will have a tainted qualified type. When a tainted
typed variable is used in potentially dangerous situations,
an error is signalled.

A closely related area of study is the elimination of array
bounds checks [4, 11]. The approach works by propagating
the constraints implied by array bounds checks through the
dataflow graph of a program. Similar to our dynamic con-
straint modifications, program operators and control points
adjust propagated constraints accordingly. Array bounds
checks that see reaching definitions of earlier (sufficient)
checks can be eliminated. These optimizations are directly
applicable to the optimization of our input bounds checks,
and they form the basis for our on-going static optimization
work details in the paper conclusions.

Model checking is another formal method of proving that a
program is bug-free. These techniques are very powerful
but in order to prove that no errors exist, the number of pos-
sible states that must be searched is often extremely large,
making the proof infeasible. To reduce the search space,
further abstractions are often used that limit the scope of the
search. Consequently, the ability to prove that a property is
satisfied may be lost, but previous efforts have shown that a
large number of bugs can still be found. Static software ver-
ification systems include Microsoft’s SLAM system [3]
which converts a program into a boolean program using
predicate abstraction [10]. Reachability analysis is used to
determine if an error state can be reached. BLAST [16] uses
lazy abstraction, an automated abstraction and refinement
process that abstracts the program to the proper amount of
precision necessary to verify a particular property. The
SPIN model checker [17] is popular for verifying distrib-
uted system protocols.

6. Conclusions and Future Work

In this paper, we describe an approach for dynamically
checking for software faults caused by improperly bounded
program input. Our dynamic approach overcomes many
limitations of static analysis while reducing the dependence
on the input. On a given program path, the range of all pos-
sible input values is validated to ensure that no input-related
errors can occur. This is accomplished by shadowing all
inputs with state variables.

Integers are shadowed with an interval constraint contain-
ing the bounds an input variable may hold. Control deci-
sions narrow the interval constraint and operations adjust
the constraints. At potentially dangerous array access sites,
the range of variable is checked against the bounds of the
referenced array. Strings are shadowed by the maximum
possible length the string may hold and a flag that indicated

if the string must be null terminated or not. Control deci-
sions based on the string length can reduce the maximum
size. String functions are checked to make sure that source
strings are properly null terminated and destination strings
have sufficient space for all possible string sizes.

Our approach is generic and can be applied to any program.
We applied our technique to eight programs and found a
total of 16 bugs including two security flaws in OpenSSH.
The cost of our checker’s accuracy is run-time perfor-
mance, with some programs experiencing more than two
orders of magnitude slowdown. As such, in its current form
our approach is best targeted to development testing where
precision is more important.

In the future, we plan to address the performance impacts
by adding an analysis phase to the compiler that will elimi-
nate unnecessary instrumentation. This phase will be aware
of how the instrumentation works, making possible optimi-
zations such as copy propagation on the input interval con-
straints. The static analysis can also be used to improve the
quality and scope of bug detection. For example, static
analysis could identify manual strcpy loops that copy ele-
ments individually. Another avenue for future work is to
address areas of unsoundness by adding symbolic analysis
support. This will also reduce the number of false alarms.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable comments. This work is supported under the
DARPA/MARCO Gigascale Silicon Research Center and a
National Science Foundation Graduate Fellowship. Equip-
ment support was provided by Intel.

References
[1] K. Ashcraft and D. Engler. Using Programmer-Written Compiler

Extensions to Catch Security Holes. Proceedings of the 2002
IEEE Symposium on Security and Privacy, May 2002.

[2] T. Austin, S. Breach, and G. Sohi. Efficient Detection of All
Pointer and Array Access Errors. Technical Report #1197, Com-
puter Science Department, University of Wisconsin, Dec. 1993.

[3] T. Ball and S. Rajamani. Automatically Validating Temporal
Safety Properties of Interfaces. Workshop on Model Checking of
Software, May 2001.

[4] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array
Bounds Checks on Demand. Proceedings of the Conference on
Programming Language Design and Implementation, June 2000.

[5] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience,
July 2000.

[6] Checker. http://www.gnu.org/software/checker/checker.html
[7] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzè. Using

Symbolic Execution for Verifying Safety-Critical Systems. Pro-
ceedings of the 9th International Symposium on Foundations of
Software Engineering, Sept. 2001.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A.
Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. Proceed-

ings of the 7th USENIX Security Conference, Jan. 1998.
[9] D. Evans and D. Larochelle. Improving Security Using Extensible

Lightweight Static Analysis. IEEE Software, Jan./Feb. 2002.
[10] C. Flanagan and S. Qadeer. Predicate Abstraction for Software

Verification. Proceedings of the Symposium on Principles of Pro-
gramming Languages, Jan. 2002.

[11] R. Gupta. A Fresh Look at Optimizing Array Bound Checks.
Conference on Programming Language Design and Implementa-
tion, June 1990.

[12] J. Forrester and B. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. Proc. of the
4th USENIX Windows System Symposium, Aug. 2000.

[13] R. Hastings and B. Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. 1992 Winter USENIX Conference, Jan.
1992.

[14] E. Haugh and M. Bishop. Testing C Programs for Buffer Over-
flow Vulnerabilities. Proceedings of the 10th Network and Dis-
tributed System Security Symposium, Feb. 2003.

[15] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B.
Sridharan. Designing the McCAT Compiler Based on a Family of
Structured Intermediate Representations. Proceedings of the 5th
International Workshop on Languages and Compilers for Parallel
Computing, Aug. 1992.

[16] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstrac-
tion. Proceedings of the Symposium on Principles of Program-
ming Languages, Jan. 2002.

[17] G. Holzmann. The Spin Model Checker. IEEE Transactions on
Software Engineering, May 1997.

[18] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y.
Wang. Cyclone: A Safe Dialect of C. Proceedings of the USENIX
Annual Technical Conference, June 2002.

[19] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: an interpreter-base
programming environment for the C language. Proceedings of the
Summer USENIX Conference, 1988.

[20] K. Lhee and S. Chapin. Type-Assisted Dynamic Buffer Overflow
Detection. Proceedings of the 11th USENIX Security Sympo-
sium, Aug. 2002.

[21] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time
Checking. Proceedings of Operating Systems Design and Imple-
mentation, Oct. 1996.

[22] G. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe Ret-
rofitting of Legacy Code. Proceedings of the Symposium on Prin-
ciples of Programming Languages, January 2002.

[23] Parasoft Corporation. Insure++: An Automatic Runtime Error
Detection Tool. Technical Report PS961-INS1.

[24] B. Perens. Electric Fence. <http://sunsite.unc.edu/pub/Linux/
devel/lang/c/ElectricFence-2.0.5.tar.gz>

[25] Perl v5.6 Documentation: perlsec. <http://www.perldoc.com/
perl5.6/pod/perlsec.html>

[26] Pointer-Intensive Benchmark Suite <http://www.cs.wisc.edu/
~austin/ptr-dist.html>

[27] R. Rugina and M. Rinard. Symbolic Bounds Analysis of Pointers,
Array Indices, and Accesses Memory Regions. Proceedings of the
Conference on Programming Languages Design and Implementa-
tion, June 2000.

[28] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting For-
mat-String Vulnerabilities with Type Qualifiers. Proceedings of
the 10th USENIX Security Symposium, Aug. 2001.

[29] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities.
Network and Distributed Security Symposium, Feb. 2000.

[30] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient soft-
ware-based fault isolation. Proceedings of the 14th Symposium
on Operating System Principles, June 1993.

	1. Introduction
	2. High coverage detection of software faults
	2.1 Detecting dangerous array references
	2.2 Detecting misuse of string functions
	2.3 Other improper uses of input data

	3. Implementation
	3.1 Limitations

	4. Results
	4.1 Bugs Detected
	4.2 Performance

	5. Related Work
	6. Conclusions and Future Work
	References

